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ABSTRACT   
 
The C* model has been proposed to account for the breakdown of K-similitude which occurs for 
short cracks. The model is based on the concept that crack growth rate is dependent not only on 
the stress intensity factor range, but also on crack length. This report evaluates the C* model using 
experimental data from the open literature. For comparison, two other models, the El Haddad 
model and the FASTRAN model, were also evaluated for their capability in dealing with the same 
problem. The objective of the evaluation was to assess the performance of the C* model compared 
with the other two models in treating short and long crack growth in a unified manner, and to 
illustrate their merits and shortcomings.  For the cases tested, the C* model was found to be 
ineffective in resolving the issue of breakdown of similitude for short cracks, and was of less 
practical use than the other models. 
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Evaluation of the C* Model for Addressing Short 
Fatigue Crack Growth  

 
 

Executive Summary  
 
The accurate modelling of fatigue crack growth in high strength metallic aircraft structures 
is an essential requirement for the structural integrity management of the aircraft fleets of 
the Royal Australian Air Force. One of the challenges in the analysis of fatigue crack 
growth is the apparent anomalous behaviour of short crack growth which cannot be 
adequately characterised by linear elastic fracture mechanics. In terms of fatigue life, short 
crack growth plays an important role, as in some structures a significant amount of service 
life is expended in growing short cracks in the order of microns. 
 
The C* model has been proposed to account for the breakdown of K-similitude which 
occurs for short cracks. The model is based on the concept that crack growth rate is 
dependent not only on the stress intensity factor range, but also on crack length. This 
report evaluates the C* model using experimental data from the open literature. For 
comparison, two other models, the El Haddad model and the FASTRAN model, were also 
evaluated for their capability in dealing with the same problem. The objective of the 
evaluation was to assess the performance of the C* model compared with the other two 
models in treating short and long crack growth in a unified manner, and to illustrate their 
merits and shortcomings.  For the cases tested, the C* model was found to be ineffective in 
resolving the issue of breakdown of similitude for short cracks, and was of less practical 
use than the other models. 
 
Having knowledge of the most accurate and reliable methods of modelling the growth of 
fatigue cracks in the small crack regime will improve the ability of the RAAF to manage 
their fleets. Where accurate modelling cannot be done, conservative assumptions need to 
be made and this leads to higher costs through earlier retirement times and/or more 
frequent inspections. The work conducted here will assist the Royal Australian Air Force 
to select the most appropriate modelling techniques and thereby minimise unnecessary 
conservatism and reduce the cost of ownership and improve aircraft availability. 
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Nomenclature 

a  Crack length, or half length for a symmetric crack. 
c  Crack length, or half length for a symmetric crack. 
0a  

A material constant which represents a small crack size: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

≈
e

K
a

σβπ
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C  Crack growth rate coefficient in Paris law. 
*C  Parameter in C* Model 

m  Crack growth rate exponent in Paris law. 
*m  Parameter in C* Model 

N  Number of cycles. 
iN  Initial Number of Cycles 

fN  Fatigue life; the number of cycles to fatigue failure. 

K  Stress intensity factor. 
KΔ  Stress intensity factor range. 

0KΔ  Long crack threshold. It is considered to be a material constant, and in 
particular, independent of crack length. 

effKΔ  Effective stress intensity range. 

R   Stress ratio of a load cycle, maxmin / SSRS = . 
S  Applied remote stress. 

effSΔ  Effective stress range, openeff SSS −=Δ max  

maxS  The maximum stress in a load cycle. 

oS  Crack opening stress. 
SΔ  Applied stress range. minmax SSS −=Δ . 
β  Geometry correction factor, which is a function of crack size and component 

geometry. 
ρ  Monotonic plastic zone size. 
eσΔ  Endurance limit. 
ω  Dugdale cyclic plastic zone size. 
φ  Constant in C* model 
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1. Introduction 
The assessment of structural fatigue life and crack growth is an essential element in the 
management of structural integrity of military aircraft fleets. For structures that were 
designed according to the safe life methodology, the total life may be modelled as a 
combination of crack initiation life and (long) crack growth life, or alternatively as simply 
crack growth life encompassing short and long cracks. With the advancement in experimental 
and computational techniques, there is a trend to expand crack growth analysis into cracks of 
the length scale traditionally treated as crack initiation. This is the so-called “short” or “small” 
crack regime in which the stress intensity factor (SIF) range ( KΔ ) similitude is known to break 
down [1]. Typically, short cracks grow faster than long cracks when subjected to the same 

KΔ (for constant amplitude loading), and they may continue to grow below the long crack 
threshold as illustrated in Figure 1. Short cracks may initially grow at a decreasing rate, and 
then accelerate to merge with the growth rate of long cracks, or they may stop growing 
altogether, as illustrated by the dashed lines in Figure 1. As shown here, a fourth regime may 
be identified in addition to the traditional three regions of SIF range. In addition to the 
threshold regime, stable growth regime and the fracture regime for long cracks, there is a 
short crack regime. Short cracks exhibit different behaviour to long cracks when subjected to 
the same KΔ . For example, at point A, the long crack growth rate is below the short crack 
growth rate, and at point B, the long crack ceases to grow but the short crack continues to 
grow. These phenomena are collectively referred to as short crack effects, or short crack 
anomalies, and cannot be readily represented by growth rate laws such as the Paris law [2]. 
From the viewpoint of linear elastic fracture mechanics (LEFM), short crack effects 
demonstrate a breakdown of the similitude principle, i.e., KΔ  is no longer a unique 
correlating parameter for crack growth rate. This “anomalous” growth behaviour of short 
cracks was first observed by Pearson [3], and has been studied extensively by numerous 
researchers (for example [1, 4-8]). These phenomena have practical engineering significance 
because the predictions of short crack growth based on LEFM usually lead to non-
conservative growth rate, inspection intervals or possibly critical crack size [9] if they are not 
modelled properly.  
 
The technical relevance of short crack growth is manifested in the fact that the major part of 
the fatigue life of components managed according to the concept of durability and damage 
tolerance is generally spent on growing micro and short cracks. Consequently, a significant 
amount of research work has been conducted to understand and model short crack growth. In 
a classical paper on short crack growth by Suresh and Ritchie [1], a comprehensive review was 
given to the then state-of-the-art in the research of short crack effects, including different 
techniques used for measuring short cracks, the generation of short cracks, the measurement 
of short crack thresholds and crack closure, and the breakdown of similitude for three types of 
short cracks. From the viewpoint of engineering application, a critical issue for short crack 
modelling is the use of long crack growth rate data to predict short crack growth behaviour. 
This is extremely desirable because short crack growth data are difficult and expensive to 
acquire. Indeed, using long crack data to predict short crack growth has been the central issue 
for short crack modelling. 
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Recently, Jones et al. proposed a crack growth model referred to as the  model, after the 
principal parameter of the model [5-7]. The model aims to deal with the breakdown of 
similitude in Region I and the lower end of Region II (see 

*C

Figure 1), by introducing an explicit 
crack length term into the rate equation. In this report, we evaluate the  model, using 
experimental crack growth data obtained from the open literature. Specifically, the report 
focuses on examining: 

*C

 
a. The extent to which the model can address short and long cracks in a unified manner; 
b. Whether the model is able to deal with short and long cracks in Region I (see Figure 1); 
c. Whether the model works for the whole of Regions I and II. 

 
For comparison, two existing models, the El Haddad model [10] and the FASTRAN [11] 
model are also examined.  

Short cracks 
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Figure 1: Illustration of typical long and short crack growth rates as a function of stress intensity factor 
range, under constant amplitude loading. Short cracks grow at below the threshold value 
for long cracks. They may either develop into long cracks or arrest. Short cracks emanating 
from notches usually develop into long cracks (adapted from [1]). 
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2. Analytical Models 
Over the last few decades, numerous models have been proposed to account for short crack 
effects, with varying degrees of success. A comprehensive review of short crack research is 
beyond the scope of this report, but several good review papers may be consulted for this, e.g. 
[1, 9, 12]. In this section, we summarise the  model proposed by Jones et al. [5-7], and two 
reference models; the El Haddad model [10], and the FASTRAN model [11], to define the 
scope for the evaluation.  

*C

2.1 C* Model 
Based on the experimental observation that for a wide class of engineering problems the crack 
growth appears to be exponential, Jones et al. [5-7] proposed that in the low to mid range KΔ  
region (Region I), the crack growth rate may be expressed as;  

**

eff
2/1* mm KaC

dN
da

Δ= −  (1) 

where and  are constants,  is the crack length, and *C *m a effKΔ  is the effective applied stress 
intensity range. It was suggested [5-7] that by making the crack growth rate explicitly depend 
on the crack length as well as the stress intensity range, the “breakdown of similitude” in 
Region I may be removed, however this point was not clearly illustrated in [5, 6]. It was not 
clear, for example, whether the “breakdown of similitude” refers to the short crack effect, or 
the threshold behaviour of long cracks, as represented in Figure 1 by the dashed and solid 
lines, respectively. From the plots presented in [5, 6], it appears that the breakdown of 
similitude refers to the threshold behaviour of long cracks, but no evidence was given to 
demonstrate that two long cracks of different sizes, when subjected to the same SIF range, will 
grow at different rates. These observations notwithstanding, it is worthwhile to investigate the 
applicability of the model to the short crack regime, the threshold regime and the Paris 
regime1.  
 
By examining the selected experimental data, it was suggested in [5, 6] that  in Eqn (* 3m = 1), 
i.e.,   

aKC
dN
da /3*Δ=  (2) 

Thus, the fatigue crack growth rate is described by a single parameter, the coefficient of crack 
growth rate .  *C
 
A general form of Eqn (1) reads, 

** mKaC
dN
da

Δ= φ  (3) 

                                                      
1 The Paris regime is Region II (see Figure 1). In this regime it is generally accepted that similitude holds 
and LEFM is valid. 
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which allows the exponents φ  and  to vary independently. Eqn (*m 1) is recovered by 
assuming  , and Eqn (2) is recovered by further setting = 3. *1 /mφ = − 2 *m
 
It should be noted that Eqn (1) is in effect the Frost-Dugdale model for log-linear growth [13] 
when the geometry factor (β) is constant, as shown here: 

( )

( )
( )

( )
a

aSC

SaaC

aSaC

KaC
N
a

m

mmm

mm

mm

m

m

λ
πβ

πβ

πβ

=
Δ=

Δ=

Δ=

Δ=

−

−

−

*

*
*

*

**

*

2/)2/1(*

)2/1(*

eff
)2/1(*

d
d

 (4) 

The intention of the Eqn. 1 representation of the Frost-Dugdale model is so that existing and 
widely available experimental data ( , , a na d/d KΔ ) can be investigated. The attractiveness of 
the Eqn. 2 version of the model is that there is only one parameter ( ) to determine. Note 
that the value of  will be unique for each combination of material, stress level and 
spectrum, and therefore needs to be derived from experimental data. Both Equations 2 and 3 
(for =3) are evaluated in this report.  

*C
*C

*m

2.2 El Haddad Model 
Within the framework of LEFM, the short crack effects may be modelled by adopting an 
artificial crack length of  for stress intensity range calculation [10], where  is the 
physical crack length and  a material parameter. Thus, 

0aa + a

0a

)()( 0eff aaSaK +Δ=Δ πβ  (5) 

which results in a significant increase in the effective stress intensity range when the crack 
length is comparable to , but this magnifying effect diminishes when the physical crack is 
much longer than . It thus approximates the observed short crack effects. In this model, the 
material-dependent parameter  was estimated from the limiting conditions of crack length 
when the nominal stress range  approaches the fatigue limit 

0a

0a

0a
SΔ eσΔ  and when KΔ  

approaches the long crack threshold intensity range 0KΔ  at 0=R . Hence, 
2

0
0

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

=
e

Ka
σβπ

 (6) 

2.3 FASTRAN Model 
In the FASTRAN model [11], a similar concept to that of the El Haddad model was used. 
Instead of adding a constant parameter  to the physical crack size, a variable 0a ω  is added. 
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Here, ω is dependent on the crack tip plastic zone size ρ  caused by the maximum stress. The 
effective stress intensity factor range is thus calculated as 

)(ffeff ωπβ +Δ=Δ aSK e  (7) 

where  is the effective stress range, and  and  are the maximum  stress 
in the current load cycle and the crack opening stress, respectively. In FASTRAN3.8

oe SSS −=Δ maxff maxS oS
2, several 

options were implemented for the calculation of ω , and one of them is  
2)1(05.0 R−= ρω . (8) 

Of course, this modification to the stress intensity range in FASTRAN is in addition to the 
crack closure model, which itself also helps to model the short crack effects, as discussed later.  
 
A variation on the FASTRAN model was also examined. It is a combination of the FASTRAN 
and El Haddad models. Instead of adding ω to the crack length, the El Haddad is added. 
So, the stress intensity range is calculated in 

0a
CGAP as follows: 

)( 0ffeff aaSK e +Δ=Δ πβ , (9) 

in which the FASTRAN crack closure model is used to calculate the effective stress range. 

2.4 Model Evaluation Approach and Scope 
The approach and scope for model evaluation presented in this report are as follows. The 
performance of the  model was evaluated using experimental data obtained from the open 
literature. Since there is only one parameter for the  model, its performance is principally 
decided by this parameter, . It is therefore important to accurately determine the parameter 
from the given experimental data, and to explore whether a consistent single parameter can 
account for long and short crack data. It is also important to determine the extent of 
applicability of the model in Regions I and/or II. Where appropriate, the reference models 
were used to generate crack growth data for comparison. It is important to highlight that the 
two reference models use the parameters determined from the long crack data only.  

*C
*C

*C

 
The  and the El Haddad models were implemented in a purpose-built FORTRAN 
program. The El Haddad model and the FASTRAN model were integrated into CGAP [14].  

*C

 
The short crack growth data for the current evaluation were selected from [8] for two high 
strength aluminium alloys: LC9cs and 7075-T6. LC9cs is a Chinese alloy similar to 7075-T6 
except it is clad. The long crack growth rate data were also obtained from [8]. A brief 
description of the experimental data is given in Section 3. 

                                                      
2 FASTRAN3.8 is an update of FASTRAN II  
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3. Experimental Data 
The experimental data used for the current evaluation are detailed below. These data are used 
for both model identification and model verification. 

3.1 Geometry and Loading 
The short crack experimental data available in [8] included those for constant amplitude and 
spectrum loading tests on single edge notched tension (SENT) specimens of the LC9cs  and 
7075-T6 aluminium alloy. The SENT specimens were 2 mm thick and 50 mm wide, with a 
semi-circular edge notch of radius 3.2 mm on one side. The specimen design is shown in 
Figure 2, and the crack geometry is detailed in Figure 3. 

 
Figure 2: Single Edge Notch Tension Specimen [8], dimensions in mm 

 
Figure 3: Definitions for crack characterisation for SENT specimens. Adapted from [8] 
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For the constant amplitude loading, the specimens were tested under three different stress 
ratios and two stress levels for each stress ratio. For the LC9cs material, the stress levels in 
terms of  were 70 and 90 MPa at maxS 1−=R , 100 and 115 MPa at 0=R , and 165 and 185 MPa 
at . For the 7075-T6 material, the stress levels in terms of  were 80 and 95 MPa at 5.0=R maxS

1−=R , 120 and 140 MPa at , and 195 and 220 MPa at 0=R 5.0=R .  
 
It is important to define the parameters which are used in this report to quantify the cracking. 
These are shown in Figure 3 which was adapted from [8]. 

3.2 Crack Growth Properties 

3.2.1 LC9cs Alloy Short and Long Crack Growth Data and Geometry Factor 

The most useful way to evaluate the performance of the  model compared with the other 
models is to compare analytical versus experimental results in terms of crack size plotted 
against the number of cycles of applied loading. In the case of the LC9cs data in [8], the only 
case for which short crack data was explicitly available in that form was for constant 
amplitude loading at 

*C

1−=R  and 90max =S  MPa. This case, as expected, produced the most 
significant short crack effects, and hence it has been chosen for the main evaluation. For 
comparison, the cases of 115 ,0 max == SR  MPa and 185 ,5.0 max == SR MPa were also analysed 
using the El Haddad model. The experimental crack growth curves for 1−=R  are re-
produced in Figure 4, in which the crack length is the length along the bore of the notch for a 
semi-circular corner crack, with an aspect ratio of approximately  (see 1/ =ca Figure 3 for 
definitions). This was the typical form of cracking for this case, and most cracks initiated as 
corner cracks at the interface with the clad layer.  
 
The long crack growth rate data for LC9cs is shown in Figure 5. The straight line represents 
the Paris law with 119221.1 −= EC  and 0384.3=m . These parameters are subsequently used 
for the evaluation of the El Haddad model while the  versus ∆K/da dN eff data as per [8] is 
used for the FASTRAN model evaluation. The geometry factor ( β ) solution for a single, semi-
circular ( ) corner crack was extracted from CGAP, which is essentially an 
implementation based on the solution given in [8]. The geometry factor as a function of crack 
length is plotted in 

1/ =ca

Figure 6. This geometry factor solution was used for the evaluation of the 
El Haddad and  models for the LC9cs alloy case. In the case of FASTRAN/CGAP, the 
internal solution which evaluates the crack growth independently in the thickness and width 
direction was used. The analysis resulted in the crack retaining a shape very close to semi-
circular throughout its life in any case, so the solution as per 

*C

Figure 6 is very close to that used 
for the FASTRAN/CGAP analysis. 
 
The initial crack size used for all the models is 77 μm, as per [8]. From the viewpoint of 
engineering application, the initial crack size plays a significant role in the crack growth life 
analysis, but a detailed discussion on this is beyond the scope of the current report. The 
current initial crack size is based on experimental observation as per [8]. 
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LC9cs Smax = 90 Mpa R = -1
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Figure 4: Experimental short crack growth for SENT specimen, constant amplitude loading, 1−=R  
and  MPa, LC9cs aluminium alloy. Reproduced from [8] 90max =S

 

LC9cs long crack growth rate R=-1
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R2 = 9.8803E-01

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1 10 100
∆K (MPa√m)

dc
/d

N
 (m

/c
yc

le
)

 

Figure 5: Long crack growth rate data LC9cs alloy 1−=R , from [8]. Note that the power curve fit 
(Paris type equation) ignores the data near the threshold region, i.e. the two data points 
below 1e-9 m/cycle. 
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Geometry factor solution for a single, semi-circular corner crack from a 
semi-circular edge notch
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Figure 6: Geometry factor solution for a single, semi-circular corner crack emanating from an edge 
notch as per Figure 2, extracted from FASTRAN/CGAP. Solution is for the “a” direction 
as per the definitions in Figure 3. 

3.2.2 7075-T6 Alloy Short and Long Crack Growth Data and Geometry Factor 
Similar to the case for LC9cs alloy, the only case where crack length against cycle short crack 
data were presented in [8] for 7075-T6 was for constant amplitude loading at 1−=R  and 

 MPa. Again, this case produced the most significant short crack effects, and hence it 
has been chosen for the evaluation. The experimental crack growth curves for 

95max =S
1−=R  are re-

produced in Figure 7. The crack length in Figure 7 is the tip to tip length (L=2a) along the bore 
of the notch for mid-thickness, semi-circular surface crack, with an aspect ratio of 
approximately . The cracks observed in the 7075-T6 specimens were typically of that 
form. As reported in [8], it was discovered that the replica technique affected the crack growth 
rate. This is discussed as appropriate in this report when assessing the results and comparing 
analysis with test data.  

1/ =ca

 
Similar to the LC9cs alloy, the long crack growth rate data are plotted in Figure 8 and fitted to 
the Paris law, to give  and 110887.1 −= EC 1697.3=m . These parameters were used for the 
evaluation of the El Haddad model while the  versus /da dN effKΔ  data as per [8] were used 
for the FASTRAN model evaluation. The geometry factor ( β ) solution for a single mid-
thickness, semi-circular surface crack, with an aspect ratio of 1/ =ca  was extracted from 
CGAP and is plotted against a in Figure 9. This geometry factor solution was used for the 
evaluation of the El Haddad and  models for the 7075-T6 case. A similar approach to that 
for LC9cs was adopted for the FASTRAN/CGAP analyses. 

*C

 
The initial crack size used for all the models is 3a =  μm ( 2L a 6= =  μm) and  μm, as per 
[8]. Although this initial crack shape is not semi-circular (a/c=1), the cracks almost 
immediately become semi-circular in shape. Further details are provided in [8]. 

9c =
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7075-T6 Smax 95 MPa R=-1
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Figure 7: Experimental short crack growth for SENT specimen, constant amplitude loading, 1−=R  
and  MPa, 7075-T6 aluminium alloy. Reproduced from [8] 95max =S

 

Long crack growth rate data, 7075-T6 R=-1
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Figure 8: Long crack growth rate data 7075-T6 alloy 1−=R , from [8] 
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Geometry factor solution for a mid-bore, semi-circular surface crack in the 
a (bore) direction
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Figure 9: Geometry factor solution for a single mid-bore, semi-circular surface crack emanating from 
an edge notch as per Figure 2, extracted from FASTRAN/CGAP. Solution is for the “a” 
direction as per Figure 3. 
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4. Preliminary Evaluation: Short Cracks 

In this section, predictive capability of the  model was evaluated using short crack data to 
predict short crack growth. In contrast, both reference models were evaluated using long 
crack data to predict short crack growth, which is a more desirable capability. Further 
examination of the models is presented in Section 

*C

5. In this preliminary evaluation of the  
model data from both Regions I and II are included. It is important to note that the developers 
of the  model have stated that for constant amplitude loading the method is proposed for 
Region I and the lower portion of Region II only (see Figure 1 from [6]). This aspect is 
considered in detail later in Section 

*C

*C

5. 

4.1 C* Model – Using Short Crack Data to Predict Short Crack Growth 

As discussed in Section 2.1, the  model attempts to deal with the breakdown in similitude 
by introducing an explicit crack length dependency, in addition to the stress intensity 
dependency, into the crack growth rate equation, as represented by Eqn. 

*C

2. The only model 
parameter to be determined is , but to determine this parameter, the crack length  
corresponding to, and in addition to, the normally-reported test data 

*C a
( )KdNda Δ,/  is required. 

Where this information was not directly available from [8], it was recovered by solving the 
following nonlinear equation3, if the applied stress range is known, 

aaSK πβ )(Δ=Δ  (11) 

Once the triplets ( ), / ,a da dN KΔ  are calculated, Eqn. 2 may be plotted to determine the 

parameter . On a linear-linear scale of  versus *C /da dN 3 /K aΔ ,  is the slope of the 
straight line that best fits the experimental data. To calculate crack growth using the  
model, Eqn. 

*C
*C

2 may be reformatted to give 

( )3* 3( )da C S a
dN

π β= Δ a , (12) 

which can be integrated with respect to crack length4. 

4.1.1 LC9cs Alloy 

The short crack growth rate data,  versus Na d/d 3 /KΔ a , are plotted in Figure 10 according 
to Eqn. 2. A conditional linear regression was then performed by fixing the -axis intersect to 
zero. This gives a  model parameter of . By using the 

y
*C 13* 108836.7 −×=C β  solution from 

FASTRAN/CGAP [14, 15] for a semi-circular corner crack that maintains a semi-circular 
shape throughout its life, the crack growth life was obtained by integrating  Eqn. 12. The result 
for 1−=R  and 90max =σ  MPa is plotted in Figure 11. 

                                                      
3 This was achieved using a small Fortran program called “Calc_a” detailed in Appendix A 
4 This was achieved using a small Fortran program called “CA_Integration” detailed in Appendix B 
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C* Model LC9cs Smax 90 MPa R=-1

y = 7.8836E-13x
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Figure 10: Short  crack growth rate data LC9cs alloy 1−=R , from [8], replotted according Eqn. 2
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Figure 11: Crack growth curve showing C* predictions for LC9cs alloy Smax = 90 MPa R=-1 
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An attempt was also made to evaluate the generalised model, Eqn. 3, to see the effect of the 
exponent to a  on the crack growth behaviour. Trial–and-error was used to determined the 
best value for φ , and a value of -0.4 was obtained, as shown in Figure 12.  
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Figure 12 Short crack growth rate data LC9cs alloy, from [8], replotted according to Eqn. 3, with 

.4.0−=φ  

The plot shows a slight improvement in terms of the regression parameter 2R . Note that 
5.0−=φ  corresponds to the specific case represented by Eqn. 2. The crack growth rate 

equation corresponding to Eqn. 3 becomes 

( ) 2/* ***

)( mmm
aaSC

dN
da +Δ= φβπ  (13) 

The crack growth results are also plotted in Figure 11. 
 
As can be seen in Figure 11, both Eqn. 2 and 3 produced a reasonable representation of the 
experimental crack growth in terms of the total life. However, the shape of the crack growth 
curve was poor, due to the over-estimation of the growth rate when the crack is very short, as 
can be seen in Figure 10 and Figure 12. It should be noted that since there is only one 
parameter in the  model, i.e. the parameter that defines exponential growth, the shape of 
the curve is essentially fixed. It is also important to highlight that there has not been a true 
“prediction” here at all, because the same short crack data is used for both determining the 

 parameter (

*C

*C Figure 10 and Figure 12), and for comparison with the analysis (Figure 11). 
 
To further highlight the difficulty of identifying a single, constant value of , the data 
represented in 

*C
Figure 10 were re-plotted after first calculating a value of for each data *C
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point (using Eqn. 2). The result is shown in Figure 13. The value determined earlier is also 
shown on the plot. It is clear that significant scatter in the parameter is evident, particularly 
at the shorter crack lengths where a lower value would be more appropriate. 

*C
*C
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Figure 13: C* as a function of crack length for the LC9cs R=-1 case 

4.1.2 7075-T6 Alloy 
A similar process to that used for the LC9cs data was applied to the 7075-T6 data. In this case, 
only Eqn. 2 was used because Eqn. 3 had already been evaluated for LC9cs . Figure 14 plots 
the experimental data according to Eqn. 2, and straight line defining  (green dashed), using 
all the short crack data. The crack growth curve, predicted by the  model is represented by 
the green dashed curve in 

*C
*C

Figure 15. 
 
It is clear from Figure 14 that the slope of the green dashed line was significantly affected by 
the few points with higher growth rate, which corresponds to larger crack length. Since the 
experimental data only included cracks up to 2 0.L a 3= = mm, a case was also analysed in 
which the curve fit for was restricted to data at and below that crack size. This resulted in a 
lower value of  (see the purple solid line in 

*C
*C Figure 14) and consequently a longer life (see 

the purple line in Figure 15). It is clear that the restriction did result in an improvement in the 
analysis. 
 
In this case, the issue of the effect of the replica technique on the crack growth measurement5 
is not relevant because the data used for the analysis is the same data for the results to be 
compared against. Thus far, the  model has been used to represent the original crack *C
                                                      
5 This was an issue for the 7075-T6 material as explained in [8]. 
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growth data. In that sense, the model, at least as it has been applied here, does not provide a 
prediction at all. It is clear from Figure 15 that when the data set used to determine the value 
for  is appropriately restricted, a better result is obtained. *C
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Figure 14: Short crack growth rate data 7075-T6 alloy R=-1, from [8], replotted according to Eqn. 2
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Figure 15: Crack growth curve showing short crack based C* predictions for 7075-T6 alloy 
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4.2 El Haddad Model – Using Long Crack Data to Predict Short Crack 
Growth 
For the El Haddad model described in Section 2.2, the required model parameters are C  and 

. These were determined using long crack data, as shown in m Figure 5 and Figure 8 for LC9cs 
and 7075 alloys, respectively. The Paris equation was then integrated to obtain the crack 
growth curve. It was necessary to compare the crack growth curves as there is no direct 
comparison between the crack growth rate for the  and El Haddad models. *C

4.2.1 LC9cs Alloy 

In this case, the values for  and 0KΔ eσΔ were available from [8] and they are 2.4 MPa√m and 
100 MPa, respectively, which gives 05.00 =a  mm according to Eqn. 6. The concept of the El 
Haddad model was to increase the stress intensity range for short cracks, so that for a crack 
size comparable to , the crack growth rate is higher than the value obtained from long crack 
growth rate data.  

0a

 
In Figure 16, the solid symbols represent the original short crack growth rates, and the hollow 
symbols are calculated according to Eqn. 5. It is clear from Figure 16 that the El Haddad 
adjustment shifts the short crack data in the desired direction, i.e., closer to the long crack 
data. Geometrically, this amounts to moving the short crack rate data points to the long crack 
growth rate. In other words, if the adjustment was a perfect “fix” for the short crack anomaly, 
then the hollow symbols would coincide perfectly with the long crack curve. 
Using the parameters determined in Figure 5 and the geometry factor solution in Figure 6, the 
rate equation was integrated6 to obtain the crack growth. As shown in Figure 17, three cases 
were considered. The black dashed line shows the results without considering the El Haddad 
correction, which clearly under-predicts the crack growth rate. The blue solid line shows the 
results from the El Haddad model with 05.00 =a  mm, calculated from Eqn. 6. It shifts the 
crack growth closer to the experimental data in the early stages of crack growth, but under-
corrected the data. The red dash-dot line was obtained by a trial-and-error process, which 
corresponds to . The difference in the results plotted in 103.00 =a Figure 16 suggests that the 
threshold stress intensity factor used in the calculation may be too low. As indicated by Eqn. 
6, a lower threshold results in a lower value of . Given the uncertainty surrounding 
threshold crack growth rates, and their correct determination by experiment [16], this 
apparent sensitivity to the threshold value is not particularly desirable. Also, these values of 

are of the same order as the initial crack size for the analysis (0.077 mm) which may be of 
concern. 

0a

0a

                                                      
6 The integration was performed using a small Fortran program called “CA-Integration” written by W. 
Hu. Details are at Appendix B. 
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LC9cs Smax=90 MPa, R=-1
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Figure 16 : LC9cs alloy short crack data from [8] subjected to El Haddad adjustment 
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Figure 17: Comparison of crack growth analysis using modified El Haddad approach with experimental 
data for LC9cs alloy Smax = 90 MPa R = -1. Initial crack size = 0.077 mm for all analyses 
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4.2.2 7075-T6 Alloy 

For the 7075-T6 alloy, the values for 0KΔ  and eσΔ were available from [8] and they are 2.3 
MPa√m and 140 MPa, respectively, which gives 0168.00 =a  mm according to Eqn. 6. The 
same analysis for LC9cs was conducted for 7075-T6 alloy using these parameters. Figure 18 
plots the crack growth rates according Eqn. 5, with the solid symbols representing the original 
short crack growth rates and the hollow symbols representing the model results. Again, 
Figure 18 shows that the El Haddad model shifts the short crack data in the desired direction. 
Using the parameters determined in Figure 8 and the geometry factor solution in Figure 9, the 
rate equation was integrated to obtain the crack growth. As shown in Figure 19, three cases 
were considered. The black dashed line shows the results without considering the El Haddad 
correction, which clearly under-predicts the crack growth rate. The solid blue line shows the 
results from the El Haddad model with 0168.00 =a  mm, calculated from Eqn. 6. It shifts the 
crack growth closer to the experimental data. The red long dash-short dash line was obtained 
by a trial-and-error process, which corresponds to 02.00 =a mm.  
 
The red long dash-short dash line result is very close to the FASTRAN/CGAP analysis result 
(see Section 4.3.2 Figure 22). As discussed in [8], the replica technique used to measure the 
crack lengths was found to have a significant effect on the growth rate. It was found to reduce 
the growth rate, so as per [8] it is expected that the true behaviour would be closer to the red 
long dash-short dash curve. Once again, as for the LC9cs material, it appears that the El 
Haddad model adds too little to the crack length and so the threshold stress intensity may be 
too low. Similar trends to those observed in the LC9cs case were evident here. In this case the 
values of  are much larger than the initial crack size for the analysis (0.003 mm) which may 
be cause for concern. 

0a
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Figure 18: 7075-T6 alloy short crack data from [8] subjected to El Haddad adjustment 
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Figure 19: Comparison of crack growth analysis using modified El Haddad approach with experimental 

data for 7075-T6 alloy Smax 95 MPa case 

4.3 FASTRAN Model – Using Long Crack Data to Predict Short Crack 
Growth 

4.3.1 LC9cs Alloy 
In [8], the analytical crack closure model employed in FASTRAN [11] was used to model the 
short crack growth behaviour using crack growth rate data derived from long crack tests. The 
same model has been employed in a DSTO developed code CGAP and it was used to model 
the 1−=R  and  MPa case. The result is plotted along with the analytical result from 
[8] in 

90max =S
Figure 20. It is evident that the result is very similar to that obtained in [8]. The 

difference is most likely due to the precision of the numerical values on different computers 
and compilers used to generate the executable codes7.  
 

                                                      
7 Another possible explanation was discovered later. In e-mail correspondence with the lead author of 
[8], it became evident that two errors have been made in this report, and they appear to cancel each 
other out. Firstly, as per [8], in the case of the LC9cs material, a clad correction to the stress intensity 
solution was implemented in FASTRAN and this was not done in the current work with CGAP. 
Secondly, there is an error in [8] in that the tabular long crack da/dN vs ∆Keff data as shown in Sections 
8.2.1 and 8.2.2 for 7075-T6 and LC9cs respectively are accidentally misplaced (swapped). So, in this 
report two errors have been made; no clad correction implemented in the stress intensity solution, and 
effectively using 7075-T6 growth rate data in the LC9cs analysis. As evident in Figure 20, the net effect 
is that the CGAP analysis conducted here is almost identical to the FASTRAN analysis reported in [8]. It 
was therefore decided to leave the results as they are. It is considered that the observations of trends 
and behaviours will still be valid. 
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CGAP appears to correctly simulate the shape of the crack growth curve, but it under-predicts 
the crack growth rate when cracks are 0.15 mm or larger.   
 
Figure 21 shows a comparison of the experimental data against the CGAP data obtained by 
activating both the El Haddad model with 103.00 =a  mm and the FASTRAN model. This 
combined model appears to give a much better prediction than either the El Haddad model or 
the FASTRAN model. More cases need to be studied to assess this combined model. 
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Figure 20: Crack growth comparison, experimental data compared with FASTRAN and 
FASTRAN/CGAP analyses for LC9cs alloy Smax = 90 MPa R = -1. Initial crack size = 
0.077 mm 
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Figure 21: Crack growth comparison, experimental data compared with CGAP results obtained by 
activating both the FASTRAN model and the El Haddad model with  mm 103.00 =a

4.3.2 7075-T6 Alloy 
In [8], the analytical crack closure model employed in FASTRAN [11] was used to model the 
short crack growth behaviour using crack growth rate data derived from long crack tests. The 
same code has been employed in a DSTO developed computer program CGAP and it was 
used to model the 1−=R  and 95max =S  MPa case. The CGAP results for 1−=R  and 

 MPa are plotted along with the experimental data from [8] in 95max =S Figure 22. It is evident 
that the result is identical to that obtained in [8], and over-predicts the crack growth rate. 
 
As stated earlier, from [8] it is known that the replica technique used to measure crack length, 
and therefore crack growth rate, affected the growth rate in the 7075-T6 material. However, it 
had no effect on the LC9cs material, possibly due to the clad layer. The replica technique 
slowed the rate of crack growth, so the analysis result is possibly closer to where the data 
would have been without any replica effect.  
 
Figure 23 shows a comparison of the experimental data against the CGAP data obtained by 
activating both the El Haddad model with 086.00 =a  mm and the FASTRAN model. In this 
case the combined model performed worse than the El Haddad model as shown in Figure 19. 
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Figure 22: Crack growth comparison, experimental data compared with FASTRAN and 

FASTRAN/CGAP analyses for 7075-T6 alloy Smax = 95 MPa R = -1 
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Figure 23: Crack growth comparison, experimental data compared with CGAP results obtained by 

activating both the FASTRAN model and the El Haddad model with  mm 
7075-T6 alloy S

086.00 =a
max = 95 MPa R = -1 
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5. Further Evaluation: Region I and II 

This section presents the results of further evaluation of the  model, in comparison of the 
reference models, in predicting short crack growth using long crack growth data, either 
confined to region I or region I and II, to see whether the  model can represent the short 
and long crack data in a unified manner. 

*C

*C

5.1 C* prediction of short crack behaviour using Region I and II long 
crack data 
Figure 16 and Figure 18 plot the long and short crack growth rates for LC9cs and 7075-T6 
respectively. The solid lines represent the best fit to the long crack data, and the solid symbols 
show the short crack data. These figures clearly show that the short and long crack growth 
rates cannot be uniquely characterised by the SIF Range, a clear demonstration of the 
breakdown of similitude which occurs for short cracks. Further work was undertaken to 
determine whether both the long and short crack data can be described in a unified manner 
under the  model. That work is detailed in this section. *C
 
In the first instance, it was decided to investigate this situation for both Regions I and II. This 
was done by determining the value of  from the long crack data and undertaking two 
analyses as follows: 

*C

 
a. Use the long-crack based value of to predict the short crack growth. *C
b. Compare the long-crack based value of with the value previously determined 

based on the short crack data. 

*C

 
To do this work as described, an essential ingredient is the crack length associated with the 
long crack data. Since that information was not known for the LC9cs data, an evaluation was 
performed using the 7075-T6 data. 
 
The principal author of [8], Dr J. Newman, was able to provide further information about the 
long crack data for the 7075-T6 material. He provided the stress level used in the tests and 
details of the geometry of the specimens. The test specimens were finite width and thickness 
centre crack panels. With this information, it was possible to accurately determine the crack 
length associated with each pair of crack growth rate and stress intensity range data. It was 

then also possible to plot crack growth rate against 
a

K 3Δ
 and fit a straight line through the 

data as before to determine the value of . *C
 
The long crack data as reported in [8] came from two sources; Hudson and Phillips8 (Figure 
24). The Phillips data was from the low to mid portion of the crack growth rata curve, and the 
Hudson data was from the mid to upper section. The data were processed and plotted to 
                                                      
8 In an e-mail from Dr J.C. Newman, we were advised that the data cam from work performed by two 
researchers, “Hudson” and “Phillips” and the data have been identified accordingly 
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determine *C . The Phillips result is shown in Figure 25, and the Hudson result in Figure 26. 
The Hudson data produced such large values of dc/dN and ∆K3/√a that it was difficult to 
distinguish the short crack data on the same plot. A “zoomed in” plot was constructed to 
show the comparison and it is shown at Figure 27. Another “zoomed in” plot showing both 
the Hudson and Phillips data is shown at Figure 28. 
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Figure 24: Long crack growth rate data 7075-T6 from [8] 
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Figure 25: Short crack growth rate and long crack (Phillips) data 7075-T6 alloy R=-1, from [8], 

replotted according to Eqn. 2
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Figure 26: Short crack growth rate and long crack (Hudson) data 7075-T6 alloy R=-1, from[8], 

replotted according to Eqn. 2
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7075-T6 R=-1 Data (Zoomed in)
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Figure 27: Short crack growth rate and long crack (Hudson) data 7075-T6 alloy R=-1, from[8], 

replotted according to Eqn. 2 (zoomed in to the short crack data range) 
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Figure 28: Short crack growth rate and long crack (Hudson and Phillips) data 7075-T6 alloy R=-1, 

from[8], replotted according to Eqn. 2 (zoomed in to the short crack data range) 
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A crack growth analysis was then performed using the values of obtained from the 
Hudson and Phillips data for Regions I and II. This was done in the same manner as earlier in 
Section 

*C

4.1 where it was done using the values of obtained from the short crack data. The 
results are detailed in 

*C
Figure 29. It is clear that the prediction using a based on long crack 

data from Regions I and II produced a very poor correlation in terms of crack growth 
compared with the short crack data, and also compared with a analysis based on short 
crack data. The long crack data produced much higher values of which resulted in more 
rapid crack growth and a significantly shorter predicted life than observed experimentally. 

*C

*C
*C
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Figure 29: Crack growth curve showing short and long crack (Regions I and II) based C* predictions 

for 7075-T6 alloy 

In terms of the actual values of , a comparison is shown in *C Table 1. It is clear that values of 
are orders of magnitude larger when based on the long crack data, and this results in the 

significantly more rapid crack growth evident in 

*C
Figure 29. 

 

Table 1: Values of C* for 7075-T6 R=-1 

Data source to determine C* Value of C* 
(MPa√m, m units) 

Unrestricted short crack data 5.0483e-13 
Short crack data restricted to L=2a below 0.3 

mm 
1.764e-13 

Hudson data, Region II 1.477e-11 
Phillips data, Regions I and II 3.7734e-12 
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5.2 C* prediction of short crack behaviour using Region I data only 

In accordance with the objectives set out for this work (See Section 1) the ability of the  
model to deal with Region I only was further investigated. Recall that the authors of [5, 6]  
have claimed that the breakdown of similitude occurs in Region I, and the  model offers a 
resolution of that issue, specifically for Region I. 

*C

*C

 
Again, the crack length associated with the long crack growth rate data is required. This 
information was known for the 7075-T6 material, thus the data for analysis was for the 
7075-T6 material only. The long crack data is plotted in Figure 30, and the portion which 
would be considered to be “Region I” is clearly evident. A growth rate of 1x10-9 m/cycle was 
identified as the limit of Region I, and that means that in terms of the background data, only a 
portion of the “Phillips” data is relevant (i.e. none of the “Hudson” data is from Region I). 
 
As before, the data were processed to determine the value of , and the results are shown in *C
Figure 31. Even though significant scatter is evident, it is clear from Figure 31 that the short 
and long crack data lay in separate distinct regions. Straight line fits were established for these 
data, although significant scatter was evident. The 2R values for the linear regression were 
poor; 0.120 for the Phillips long crack Region I data, and 0.260 for the short crack Region I 
data. Despite these poor fits, the crack growth analysis using the values of  obtained was 
nevertheless performed. The results are shown in 

*C
Figure 32. The result for the  model 

based on the long crack Region I data compared well with the experimental short crack data 
and the CGAP/FASTRAN analyses, which is encouraging. However, it is clear that the result 
based on the short crack data from Region I was considerably different, and resulted in a six 
times longer life. This inconsistency does not support the hypothesis that the  model 
resolves the issue of breakdown in similitude for Region I fatigue crack growth. It is important 
to note that considerable scatter is evident in the Region I data. This scatter is itself evidence of 
a breakdown of similitude. Whatever the cause of this breakdown, the developers of the 

model have implied [6] that their model resolves it. 

*C

*C

*C
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Long crack growth rate data, 7075-T6 R=-1
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Figure 30: Long crack growth rate data for 7075-T6 material 
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Figure 31: Short crack growth rate and long crack (Phillips) data 7075-T6 alloy R=-1, from [8], for 

Region I only replotted according to Eqn. 2
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7075-T6 Smax 95 MPa R=-1
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Figure 32: C* based crack growth analysis results using long and short crack data restricted to Region I 
compared with the experimental crack growth data 

The  model was thoroughly investigated here for a case where good data for both long and 
short cracks in Regions I and II were available. The model was able to self-correlate 
reasonably well when short crack data is used to determine the model parameter ( ), which 
is then used to perform an analysis, the results of which are then compared with the original 
short crack data used to determine . However, in terms of resolving the problem of a 
breakdown in similitude, the model proved to be ineffective. The inability of the  model to 
resolve the problem of breakdown in similitude was found to occur regardless of whether the 
data was confined to Region I only, or was from both Regions I and II. 

*C

*C

*C
*C

5.3 Further Evaluation of the El Haddad Model 
The El Haddad model is conceptually simple. The stress intensity range is increased 
significantly when the crack length is comparable to , hence raising the crack growth rate, 
but the effect diminishes when the physical crack becomes large compared to . As 
demonstrated in 

0a

0a
Figure 16 and Figure 18, the model appears to account reasonably well for 

the difference between the long and short crack growth rates for the LC9cs and 7075-T6 
materials respectively at R=-1. When this is carried through into a crack growth analysis, the 
final lives are reasonable, but the shape of the curve is not correct (see Figure 17 and Figure 19 
for LC9cs and 7075-T6 respectively). The prediction is improved when the value of is 
adjusted to match the experimentally-observed crack growth. The model seems to over 
predict the growth rate at short crack lengths (around 0.077 mm for the LC9cs and 0.003 mm 
for the 7075-T6) and under predict the rate when the crack gets larger.  

0a

 
31 



 
DSTO-TR-2185 

 
To investigate the effectiveness of the El Haddad model for different stress ratios, the cases of 

 MPa and 115 ,0 max == SR 185 ,5.0 max == SR  MPa for the LC9cs material were also analysed 
using AFGROW [15], by adjusting the user-defined geometry factor table and the crack length 
according to Eqn. 5. The crack growth rates for all three stress ratios (-1, 0 and 0.5) are shown 
in Figure 33 to Figure 35. The investigation showed some interesting results. The model 
appears to predict a more pronounced short crack effect than is evident in the experimental 
data. As stated earlier, qualitatively the model seems to achieve the desired effect, that is at 
larger crack sizes and faster rates the predicted behaviour merges with the long crack data. 
Unfortunately the crack growth curves for R=0 and R=0.5 cases were not provided in [8], so 
direct comparisons of the analytical versus experimental crack growth curves could not be 
made. The data has been requested from the lead author of [8], Dr J. Newman, and if he is able 
to provide it then such a comparison would be particularly valuable.  
 
Observations on the results are as follows: (1) where available, the data without any 
adjustment matches the long crack data as expected; (2) the adjustment for the 

 MPa case shifts the data closer to the short crack data as required (see 90 ,1 max =−= SR Figure 
33); (3) for the higher stress ratios, the model seems to predict a more pronounced short crack 
effect than is evident in the experimental data; (4) a point in favour of the model is that the 
short crack effect is predicted to diminish as KΔ  increases such that it approaches the long 
crack data. 
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Figure 33: AFGROW model of El Haddad adjustment of KΔ  compared with experimental data for 

LC9cs alloy R = -1 Smax = 90 MPa case 
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LC9cs Smax = 115 MPa, R = 0
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Figure 34: AFGROW model of El Haddad adjustment of KΔ  compared with experimental data for 

LC9cs alloy R = 0 Smax = 115 MPa case 

LC9cs Smax = 185 MPa, R = 0.5
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Figure 35: AFGROW model of El Haddad adjustment of KΔ  compared with experimental data for 

LC9cs alloy R = 0.5  Smax = 185 MPa case 
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5.4 Further Evaluation of the FASTRAN Model 
The FASTRAN model is based on Irwin’s observation that the crack tip plasticity makes the 
crack behave as if it were slightly longer [17]. Irwin’s original idea was to add the whole crack 
tip plastic zone size ρ  to the physical crack length , but Newman’s work [8] has suggested 
that this may not always give the best prediction. FASTRAN3.8 implements several variants, 
and numerical results from the current studies and [8] show that the approach can address the 
short crack effects for a range of constant amplitude and spectrum loading conditions for high 
strength aluminium alloys. However, the accuracy of the prediction could still be improved, 
as shown by the comparison in 

a

Figure 20 where the model appears to produce significantly 
longer life than the experiments. It should be noted here that where this is discussed in [8], the 
authors claim that, based on the growth rates the cracks were exhibiting when the tests were 
stopped, some of the individual cracks in the experiments may have correlated more closely 
with the analysis had they been allowed to continue their growth. In addition to the 
modification to the crack length, the crack closure concept inherent in FASTRAN/CGAP also 
contributes to the improvement in the short crack regime through the variation in the crack 
opening stress. At the beginning of crack growth, there is no residual plastic deformation on 
the crack wake, hence the crack opening stress is lower which translates to a higher effective 
stress intensity range and crack growth rate. As crack front moves forward, residual plastic 
deformation starts to build up on the crack wake, thus leading to higher crack opening 
stresses and reduced crack growth rate. 
 
As shown in Figure 21, the combined El Haddad and FASTRAN/CGAP model resulted in an 
improved solution for the LC9cs case. In the 7075-T6 case, the FASTRAN/CGAP analysis 
produced more conservative (faster growth) results than the experimental data, but as 
discussed in [8], this was expected because of the effect that the replica technique had on crack 
growth. The combined El Haddad and FASTRAN/CGAP analysis (Figure 23) produced more 
rapid crack growth and a shorter life as expected. The combined El Haddad and 
FASTRAN/CGAP model produced a better shaped curve than the El Haddad model alone. 
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6. Discussion 
Although great efforts and resources have been spent on the research of short crack growth 
since Pearson’s observation in 1975 [3], and a great deal of qualitative understanding has 
accumulated as a result, the modelling of short fatigue crack growth is still in an 
unsatisfactory state. While the blind prediction of long crack growth, supported by numerical 
calibration, has become a more acceptable tool for the management of aircraft structural 
integrity, the same cannot be said for short crack growth. Within the framework of LEFM, the 
objective has been to use experimentally acquired long crack growth data to model the growth 
behaviour of short cracks, since it is expensive to acquire short crack growth data, and even 
then it is fraught with inaccuracies. From the viewpoint of material science however, these 
models are necessarily approximations only. The  model is a new idea for dealing with the 
problem, and it has been evaluated against two other models. The common feature to all three 
models is that they are readily applicable to real structures subjected to spectrum loading. 

*C

 
With the advancement in quantitative fractography for fracture surfaces [18], there are 
activities within DSTO to re-examine the classical models and explore new approaches to 
fatigue crack growth modelling including short cracks. The  model examined here is one 
such example. As quantitative fractography makes the acquisition of crack growth data much 
easier and less expensive, the new approaches explored so far tend to be phenomenological, 
including the extension of the Frost-Dugdale log-linear model to spectrum loading, the 
effective block approach [13], and the  model [5-7], although mechanistic modelling is also 
being pursued, e.g., [19]. As a phenomenological model, the  model showed reasonable 
correlation on the case used to develop the model, but it relies on the availability of short 
crack growth rate data. The apparent inability of the model to deal with short and long crack data in a 
unified manner brings into question its claimed ability to resolve the matter of breakdown of similitude. 
Further work is thus needed in order to achieve this objective. 

*C

*C
*C

 
The  model as proposed in [5, 6] aims to model the breakdown of similitude in “Region I”, 
as depicted in 

*C
Figure 1, in crack growth behaviour, although the authors of this report do not 

agree with the authors of [5, 6] that they have demonstrated a breakdown of similitude, or 
that they have developed a robust model to deal with it. The authors of [5, 6] assert that 
because the  approach models crack growth rate *C da

dN  as a function of the stress intensity 

range KΔ , the maximum stress intensity , and crack length , so it is therefore proven 
that the crack growth rate cannot be a function of 

maxK a
KΔ and  alone, and this constitutes a 

proof that similitude does not hold. This assertion of non-similitude is not clearly 
demonstrated by the data provided in [5, 6]. For instance, it was not demonstrated, using 
experimental data, that two long cracks of different lengths subjected to the same 

maxK

KΔ and 
 will grow at different rates (as is clearly the case for the long and short crack data from 

[8] used in this report and shown  in 
maxK

Figure 16 and Figure 18, or as is evident in Figure 2 from 
[20], or Figure 2 from [21], or Figures 10 and 11 from [16]); that short and long cracks can be 
described by one consistent relationship; and/or that the same relationship could be used to 
describe the crack growth rates in Region II. It is also fair to argue that any apparent successful 
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empirical modelling of one form does not necessarily preclude the possibility of an alternate form of 
empirical modelling. Here, we explored these possibilities by: (1) applying the parameter 
determined using long crack data to predict short crack growth; and (2) comparing the 
parameters obtained from short and long crack data. We also examined the ability of the  
model to resolve the issue for Region I data only, or data from both Regions I and II. 

*C

 
In addition, since the practical calculation of KΔ  involves a geometry factor β , which is a 
function of the crack length , so the said explicit dependence of crack growth rate on crack 
length may in fact be incorporated into the geometry factor. In any case, [5, 6] only attempted 
to demonstrate the validity of Eqn. 

a

2 in describing the crack growth rate in Region I for long 
cracks. Here we have examined its applicability to; (i) short cracks, and (ii) long cracks in 
Regions I and II, and found that for the cases examined, the  model did not resolve the 
breakdown of similitude. 

*C
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7. Concluding Remarks 
The El Haddad model is conceptually simple and appears to do a reasonable job of accounting 
for the short crack effect to some extent. However the simple modification alone does not 
appear to be sufficient. Also the amount added to the crack length can be significant in 
comparison to the initial crack size for analysis which raises some concern.  
 
The FASTRAN model performs well. The combined FASTRAN and El Haddad model seems 
to improve the solution further. 
 
In this report, the  model proposed by Jones et al [5-7] was evaluated against limited 
experimental data obtained from the open literature. The results of the evaluation show that; 

*C

 
1. if the   model parameters were obtained from short crack data, then it can make a 

reasonable “prediction” for growth of short cracks under the same conditions, but the 
quality of prediction was only comparable to that of El Haddad or FASTRAN model, 
both of which use long crack data; 

*C

2. the  model was not able to unify the short and long crack growth in Region I for the 
data considered in this report; 

*C

3. the  model, in the format discussed here, was not able to unify the crack growth in 
Region I and Region II for long cracks for the data considered in this report. 

*C

 
In short, it was not possible for the authors to use the  parameters determined from long 
crack data to make a reasonable prediction for short crack growth, nor to use the parameters 
determined from Region I long crack data to make a reasonable prediction for Region II long 
crack growth. These observations seriously question the validity and usefulness of the  
model, both in a theoretical sense and in a practical sense.  

*C

*C

 
The apparent inability of the model to deal with short and long crack data in a unified manner 
brings into question its ability to resolve the matter of breakdown of similitude. It is important 
to highlight that these conclusions are drawn based on the limited data set used here.  
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Appendix A:  Fortran Program Calc_a 

This program solves the following equation: 
 

aaSK πβ )(Δ=Δ  
 
For a given ∆K and ∆S, knowing the β(a) relationship, a can be calculated numerically. 
 
The input file format is as follows: 
 
∆S 
Number of betas 
a1 Beta1

a2 Beta2

etc............. 
Number of ∆K’s 
∆K 
∆K 
etc..... 
 
 
The output file gives two columns being the crack length and ∆K. 
 
The listing of the source code is as follows: 
!  Calc_a.f90  
! 
!  FUNCTIONS: 
!  Calc_a      - Entry point of console application. 
! 
 
!************************************************************************
**** 
! 
!  PROGRAM: Calc_a 
! 
!  PURPOSE:  To calculate the crack length from give Dk, DS and beta. 
! 
!************************************************************************
**** 
 
    program Calc_a 
    use nrtype 
    implicit none 
    integer nbetas, ndks, i 
    real(8) beta_a(100), beta(100), ds, dk(1000) 
    real(8) a0, bta, get_beta, a, f 
    character(80) infile, outfile 
    integer blank 
    ! Input DS 
    ! Input the beta table 
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    write(*,*)'Input file format: ' 
    write(*,*)'delta_s' 
    write(*,*)'num_betas' 
    write(*,*)'a1 beta1' 
    write(*,*)'a2 beta2' 
    write(*,*)'...' 
    write(*,*)'number_of_dKs' 
    write(*,*)'dk1' 
    write(*,*)'dk2' 
    write(*,*)'...' 
    write(*,*) 
    write(*,*)'Enter the input file name:' 
    read(*,'(A80)') infile 
     
 blank = INDEX (infile, '.', .true.)  ! find the last dot 
 if (blank.gt.0) then 
  outfile = infile(1:blank) // 'out' 
 else  ! there is no extension. Just add '.out' 
  outfile = infile(1:len_trim(infile)) // '.out' 
 end if 
  
 OPEN(3,FILE=INFILE, STATUS='OLD', err=90001) 
 OPEN(4,FILE=OUTFILE, STATUS='REPLACE', err=90002) 
     
    read(3,*) ds 
    read(3,*) nbetas 
    do i=1,nbetas 
        read(3,*) beta_a(i), beta(i) 
    end do 
    ! Input a list of Dk, and output a list of corresponding a 
    read(3,*) ndks 
    do i=1,ndks 
        read(3,*) dk(i) 
    end do 
     
    ! solve the equation F(a)=dk - ds*beta*sqrt(pi*a)= 0, using iterative 
method 
    ! starting with a0=0 
    a0=0 
    do i=1,ndks 
        bta=get_beta(beta_a, beta, a0, nbetas) 
        a=(dk(i)/ds/bta)**2/pi 
        f=dk(i)-ds*bta*sqrt(pi*a0) 
        do while(abs(f/dk(i))>0.01) 
            a0=a 
            bta=get_beta(beta_a, beta, a0, nbetas) 
            a=(dk(i)/ds/bta)**2/pi 
            f=dk(i)-ds*bta*sqrt(pi*a0) 
        end do 
        a0=a 
        write(4,*) a0, dk(i) 
    end do 
    90001 continue 
    90002 continue 
    end program Calc_a 
 
function get_beta(beta_a, beta, a0, nbetas) 
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    ! return the beta value by linear interpolation 
    implicit none 
    real(8) get_beta 
    real(8) beta_a(100), beta(100), a0, locate 
    integer loc, left_node, right_node, nbetas 
    real(8) l_value, r_value, x_diff 
    call locate_x(beta_a, a0, left_node, right_node, nbetas) 
 if (left_node .eq. -1) then 
     ! 
     write(4,*) 'An error occurred in elastx(x)' 
     write(4,*) 'Analysis terminated.' 
     stop 
 end if 
 
 if ( left_node .eq. right_node ) then ! we are lucky. it's the 
nodal value we need. 
  get_beta = beta(left_node) 
 else ! interpolation needed. A linear one should do 
  l_value = beta(left_node) 
  r_value = beta(right_node) 
  x_diff = beta_a(right_node) -beta_a(left_node) 
  get_beta = l_value + (a0 - beta_a(left_node)) * (r_value - 
l_value) / x_diff 
 end if 
    return 
end function get_beta 
 
 
 subroutine locate_x(nodal_coords, x, l_node, r_node, num_nodes) 
 !use bigc, only: exit_code 
 nd the two nodes that contains it ! given x, fi
 implicit none 
 integer, intent(in) :: num_nodes 
 real(8), intent(in) :: x, nodal_coords(100) 
 integer, intent(out) :: l_node, r_node 
  variables ! Local
 integer inode 
 
 l_node = -1 
 node = -1 r_
 if(x<nodal_coords(1))then 
     l_node=1 
     r_node=1 
     return 
 else if(x>nodal_coords(num_nodes))then 
     l_node=num_nodes 
     r_node=num_nodes 
     return 
 end if 
 do inode = 1, num_nodes 
  if (x .eq. nodal_coords( inode ) ) then 
   l_node = inode 
   r_node = inode 
   exit 
  end if 
  if (inode .eq. 1) then 
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   if ( x .gt. nodal_coords( 1 ) .and. x .lt. 
nodal_coords( 2 ) ) then 
    l_node = 1 
    r_node = 2 
    exit 
   end if 
  else 
   if ( x .ge. nodal_coords( inode -1 ) .and. x .le. 
nodal_coords( inode ) ) then 
    l_node = inode - 1 
    r_node = inode  
    exit 
   end if 
  end if 
 end do 
 if (l_node.eq.0 .or. r_node .eq. 0) then 
     write(4,*) 
     write(4,*) '***** FATAL ERROR: ' 
  write(4,*) 'x is not within the range. Program terminates.' 
  write(4,*) 'x = ', x 
  write(4,*) 'nodal_coords(1) = ', nodal_coords(1) 
  write(4,*) 'nodal_coords(num_nodes) = ', 
nodal_coords(num_nodes) 
  write(4,*) '***** The first grid coordinate is smaller than 
the radius of the hole.' 
  write(4,*)  
  l_node = -1 
! err_code = 91002    
 end if 
 return 
 end subroutine locate_x 
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Appendix B:  Fortran Program 
“CA_Integration” 

A source code listing for the program is included below. 
 
The program integrates the following equation: 
 

mKCa
dN
da

Δ= φ  

 
Which can be expressed as; 
 

∫ Δ
=

f

i

N

N
m da

KCa
N φ

1
 

 
Where: 
 

βπσ aK Δ=Δ  
N is the life in cycles 
∆K is the stress intensity range 
∆σ is the applied stress range 
β is the geometry factor 
C, m and φ  are constants 
 
The form of the input file (must be named “ds.dat”) is as follows: 
 
C m φ  
∆σ 
ai af  ∆a a0

Number of betas 
a1 beta1 
a2 beta2 
etc. 
 
Where; 
 
ai is the initial crack size 
af is the final crack size 
∆a is the crack increment 
a0 is an additional amount to add to the crack length for the El Haddad approach where the 
stress intensity range solution becomes βπσ )( 0aaK +Δ=Δ  
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The output file is named “fort.2” and the format is three columns of data comprising N 
(number of cycles), a (crack length) and ∆K 
 
The listing of the source code is as follows: 
!  CA_Integration.f90  
! 
!  FUNCTIONS: 
!  CA_Integration      - Entry point of console application. 
! 
 
!************************************************************************
**** 
! 
!  PROGRAM: CA_Integration 
! 
!  PURPOSE:  Integrates the crack growth rate equation for CA loading 
!           and user supplied beta-table 
! 
!************************************************************************
**** 
module a_block 
    real(8) :: a_beta(100), beta(100), cstar, mstar, phi, a0 
    integer :: nbetas 
end module a_block 
 
program CA_Integration 
    use nrtype 
    use a_block 
    implicit none 
 real(8) ai, af, errabs, errrel, errest, life, ds, ds_const, a, 
delta_a, r_func, get_beta 
 integer irule, i 
    external a_func 
    riables ! Va
    open(1,file='ds.dat') 
    read(1,*) cstar, mstar, phi 
    read(1,*) ds 
    read(1,*) ai, af, delta_a, a0  ! a0 is the El Haddad parameter 
    read(1,*) nbetas 
    do i=1,nbetas 
        read(1,*) a_beta(i), beta(i) 
    end do 
    ds_const=cstar*(ds*sqrt(pi)*R_func())**mstar 
    ! Body of CA_Integration 
 
 irule = 2 
 errabs = 1.D-4 
 errrel = 1.D-3 
 a=ai 
  
 do while(a<af) 
   call DQDAG (a_func, ai, a, ERRABS, ERRREL, IRULE, life, ERREST)   
        write(2,*) life/ds_const, a, 
ds*get_beta(a_beta,beta,a,nbetas)*sqrt(pi*a) 
 a=a+delta_a               
    end do 
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end program CA_Integration 
 
real(8) function a_func(a) 
    use nrtype 
    use a_block 
    implicit none 
    real(8), intent(in):: a 
    real(8) bta, get_beta 
    bta=get_beta(a_beta, beta, a, nbetas) 
    a_func=bta**mstar *(a+a0)**(mstar/2+phi) 
    a_func=1/a_func 
end function a_func 
 
real(8) function r_func(r) 
    implicit none 
    real(8),intent(in)::r 
    r_func=1 
    return 
end function r_func 
 
function get_beta(beta_a, beta, a0, nbetas) 
 
    beta value by linear interpolation ! return the 
    implicit none 
    real(8) get_beta 
    real(8) beta_a(100), beta(100), a0, locate 
    integer loc, left_node, right_node, nbetas 
    real(8) l_value, r_value, x_diff 
    call locate_x(beta_a, a0, left_node, right_node, nbetas) 
 if (left_node .eq. -1) then 
     ! 
     write(4,*) 'An error occurred in get_beta.' 
     write(4,*) 'Analysis terminated.' 
     stop 
 end if 
 
 if ( left_node .eq. right_node ) then ! we are lucky. it's the 
nodal value we need. 
  get_beta = beta(left_node) 
 else ! interpolation needed. A linear one should do 
  l_value = beta(left_node) 
  r_value = beta(right_node) 
  x_diff = beta_a(right_node) -beta_a(left_node) 
  get_beta = l_value + (a0 - beta_a(left_node)) * (r_value - 
l_value) / x_diff 
 end if 
     
end function get_beta 

return

 
 
subroutine locate_x(nodal_coords, x, l_node, r_node, num_nodes) 
 !use bigc, only: exit_code 
 nd the two nodes that contains it ! given x, fi
 implicit none 
 integer, intent(in) :: num_nodes 
 real(8), intent(in) :: x, nodal_coords(100) 
 integer, intent(out) :: l_node, r_node 
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  variables ! Local
 integer inode 
 
 l_node = -1 
 r_node = -1 
 if(x<nodal_coords(1))then 
     l_node=1 
     r_node=1 
     return 
 else if(x>nodal_coords(num_nodes))then 
     l_node=num_nodes 
     r_node=num_nodes 
     return 
 end if 
 do inode = 1, num_nodes 
  if (x .eq. nodal_coords( inode ) ) then 
   l_node = inode 
   r_node = inode 
   exit 
  end if 
  if (inode .eq. 1) then 
   if ( x .gt. nodal_coords( 1 ) .and. x .lt. 
nodal_coords( 2 ) ) then 
    l_node = 1 
    r_node = 2 
    exit 
   end if 
  else 
   if ( x .ge. nodal_coords( inode -1 ) .and. x .le. 
nodal_coords( inode ) ) then 
    l_node = inode - 1 
    r_node = inode  
    exit 
   end if 
 end if  
 end do 
 if (l_node.eq.0 .or. r_node .eq. 0) then 
     write(4,*) 
     write(4,*) '***** FATAL ERROR: ' 
  write(4,*) 'x is not within the range. Program terminates.' 
  write(4,*) 'x = ', x 
  write(4,*) 'nodal_coords(1) = ', nodal_coords(1) 
  write(4,*) 'nodal_coords(num_nodes) = ', 
nodal_coords(num_nodes) 
  write(4,*) '***** The first grid coordinate is smaller than 
the radius of the hole.' 
  write(4,*)  
  l_node = -1 
!  err_code = 91002   
 end if 
 return 
end subroutine locate_x 
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